

Oleh: Dian Arief Prawira Ramadhan, S.T.

Direktorat Keberlanjutan Konstruksi – Direktorat Jenderal Bina Konstruksi

Kementerian Pekerjaan Umum dan Perumahan Rakyat

PADA

Sosialisasi Peraturan Menteri PUPR Nomor 10 Tahun 2021 dan Peraturan Menteri PUPR Nomor 8 Tahun 2023 Samarinda, 21 Februari 2024

SE DIRJEN BINA KONSTRUKSI NO 73 TAHUN 2023

✓ Dalam menghitung biaya pekerjaan konstruksi diperlukan sebualr proses perkiraan biaya yang menggabungkal Analisis Harga Satuan Pekerjaan (AHSP) dan analisis biaya penerapan Sistem Manajemen Keselamatan Konstruksi (SMKK) untuk mendapatkan Harga Perkiraan Perancang (HPP), Rencana Anggaran Biaya (RAB), atau Harga Perkiraan Sendiri (HPS).

Dalam rangka melaksanakan Pasal 18 ayat (2) Peraturan Menteri PUPR Nomor 8 Tahun 2023 tentang Pedoman Penyusunan Perkiraan Biaya Pekerjaan Konstruksi Bidang Pekerjaan Umum dan Perumahan Rakyat serta untuk mengakomodir penyesuaian nilai koefisien dan variabel lainnya yang cukup dinamis dalam perhitungan teknis dan analisis produktivitas sebagai masukan bagi perhitungan AHSP maka diperlukal ketentuan yang lebih rinci terkait perhitungan teknis dan analisis produktivitas berdasarkan kaidah teknis yang dituangkan dalam Surat Edaran Direktur Jenderal Bina Konstruksi tentang Tata Cara Penyusunan Perkiraan Biaya Pekerjaan Konstruksi Bidang Pekerjaan Umum dan Perumahan Rakyat.

DASAR PEMBENTUKAN

Undang Undang Nomor 2 Tahun 2017:

tentang Jasa Konstruksi

PP Nomor 12 Tahun 2021

Tentang Perubahan Atas PP Nomor 16 Tahun 2018 tentang Pengadaan Barang/Jasa Pemerintah

Permen PUPR Nomor 11 Tahun 2022

tentang Perubahan atas Permen PUPR Nomor 13 Tahun 2020 tentang Organisasi dan Tata Kerja Kementerian PUPR

PP Nomor 14 Tahun 2021:

tentang Perubahan Atas PP Nomor 22 Tahun 2020 tentang Peraturan Pelaksanaan UU Nomor 2 Tahun 2017 tentang Jasa Konstruksi PP Nomor 27 Tahun 2020

tentang Kementerian Pekerjaan Umum dan Perumahan Rakyat

DASAR PEMBENTUKAN

Permen PUPR Nomor 26 Tahun 2020 tentang Perubahan atas Permen PUPR Nomor 16 Tahun 2020 tentang Organisasi dan Tata Kerja Unit Pelaksanan Teknis di Kementerian PUPR

Permen PUPR Nomor 8 Tahun 2023

tentang Pedoman Penyusunan Perkiraan Biaya Pekerjaan Konstruksi Bidang PUPR

MAKSUD & TUJUAN

Surat Edaran ini dimaksudkan sebagai :

Sebagai petunjuk teknis mengenai tata cara penyusunan perkiraan biaya pekerjaan konstruksi bidang PUPR untuk menghasilkan HPP, RAB, atau HPS.

Surat Edaran ini bertujuan sebagai :

Acuan penyusunan perkiraan biaya pekerjaan konstruksi sebagai acuan penyusunan perkiraan biaya pekerjaan konstruksi dalam rangka mendukung penerapan standar K4 yang didalamnya meliputi:

- standar mutu bahan,
- standar mutu peralatan,
- standar prosedur pelaksanaan jasa konstruksi,
- standar mutu hasil pelaksanaan, dan;
- standar operasi dan pemeliharaan yang merupakan bagian dari SMKK.

RUANG LINGKUP

Tabel Acuan dan Tata Cara Penyusunan Biaya Penerapan SMKK

AHSP Bidang Sumber Daya Air

AHSP Bidang Bina Marga

AHSP Bidang Cipta Karya dan Perumahan

TABEL ACUAN DAN TATA CARA PENYUSUNAN BIAYA PENERAPAN SMKK

TABEL ACUAN

- a. Faktor Konversi Bahan
- b. Berat Isi Bahan Baku, Bahan Olahan dan Campuran;
- c. Faktor Kehilangan Bahan
- d. Komposisi Campuran Bahan; dan
- e. Berat Besi/Baja Tulangan, Baja Prategang/Kawat *Stand*

Tata cara Penyusunan Biaya
Penerapan SMKK merupakan
cara menghitung biaya SMKK
sesuai dengan ruang lingkup
pekerjaan yang dihadapi

Ketentuan mengenai Tabel
Acuan dan Tata Cara
Penyusunan Biaya
Penerapan SMKK ini
tercantum dalam Lampiran
I yang merupakan bagian
tidak terpisahkan dari
Surat Edaran ini.

= AHSP BIDANG SUMBER DAYA AIR

10 JENIS PEKERJAAN

- 1. Komponen Dasar Konstruksi;
- 2. Bendung;
- 3. Jaringan Irigasi;
- 4. Pengaman Sungai;
- 5. Bendungan dan Embung;

- 6. Pengaman Pantai;
- 7. Pengendali Muara Sungai;
- 8. Infrastruktur Rawa;
- 9. Infrastruktur Air Tanah dan Air Baku; dan
- 10. Pekerjaan Pintu Air dan Peralatan Hidromekanik-elektrik.

Ketentuan mengenai AHSP Bidang Sumber Daya Air tercantum dalam Lampiran II yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.

SIGAP MEMBANGUN NEGERI

= AHSP BIDANG BINA MARGA

16 JENIS CONTOH ANALISIS

- 1. Contoh Analisis Volume Bahan;
- 2. Contoh Lembar Informasi Kegiatan Pekerjaan;
- 3. Contoh Tarif Upah dan Analisis HSD Upah (Tenaga) per Jam
- 4. Contoh Analisis Harga Satuan Dasar Peralatan atau Sewa per Jam;
- 5. Contoh Harga Bahan Baku dan Analisis HSD Bahan dan Bahan Olahan;
- 6. Contoh Analisis Harga Satuan Penerapan Sistem Manajemen Keselamatan Konstruksi (SMKK) pada Pekerjaan Perkerasan Jalan;
- 7. Contoh Analisis Harga Satuan Pekerjaan Drainase;
- 8. Contoh Analisis Harga Satuan Pekerjaan Tanah dan Geosintetik;

- 9. Contoh Analisis Harga Satuan Pekerjaan Preventif;
- 10. Contoh Analisis Harga Satuan Lapis Perkerasan Berbutir;
- 11. Contoh Analisis Harga Satuan Perkerasan Beton Semen;
- 12. Contoh Analisis Harga Satuan Perkerasan Beraspal;
- 13. Contoh Analisis Harga Satuan Pekerjaan Struktur;
- 14. Contoh Analisis Harga Satuan Pekerjaal Rehabilitasi Jembatan;
- 15. Contoh Analisis Harga Satuan Pekerjaan Harian dan Pekerjaan LainLain; dan
- 16. Contoh Analisis Harga Satuan Pekerjaan Pemeliharaan.

Ketentuan mengenai AHSP Bidang Bina Marga tercantum dalam Lampiran III yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.

= AHSP BIDANG CIPTA KARYA DAN PERUMAHAN

12 DIVISI (POKOK PEKERJAAN)

- 1. Persiapan Lapangan / site work;
- 2. Pekerjaan Struktur;
- 3. Pekerjaan Arsitektur;
- 4. Pekerjaan Lansekap;
- 5. Pekerjaan Mekanikal dan Elektrikal;
- 6. Pekerjaan Plambing;

- 7. Jalan pada Permukiman;
- 8. Drainase Jalan;
- 9. Jaringan Pipa di Luar Gedung;
- 10. Sistem Struktur RISHA;
- 11. Tipologi RISHA; dan
- 12. Desain Tipe Bangunan Rumah Susun

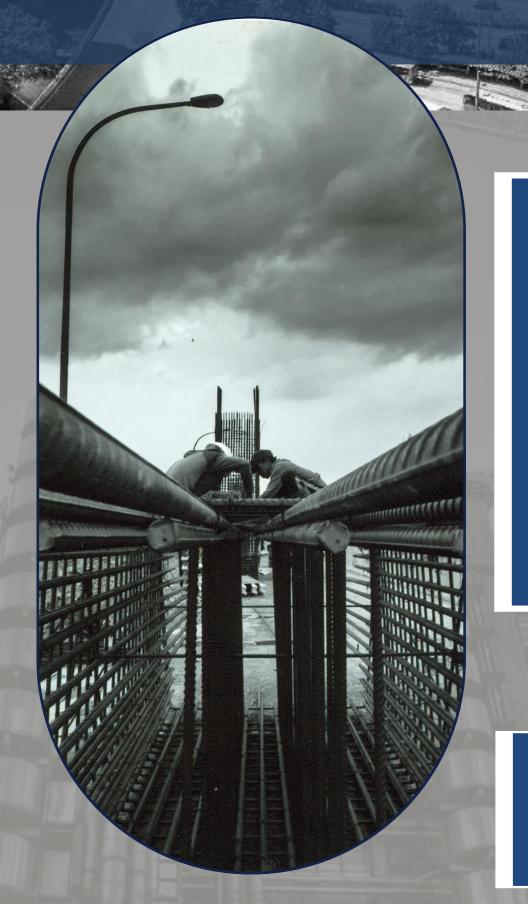
Ketentuan mengenai AHSP Bidang Cipta Karya dan Perumahan tercantum dalam Lampiran IV yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.

= KETENTUAN LAIN-LAIN

Usulan perhitungan teknis dan analisis produktivitas untuk AHSP yang belum terdapat pada bidangnya, dilakukan dengan ketentuan:

Perhitungan teknis dan analisis produktivitas berdasarkan kaidah teknis yang telah dibahas di direktorat teknis masing-masing.

Diusulkan melalui pejabat tinggi madya kepada pimpinan unit organisasi yang membidangi Jasa Konstruksi



Tidak bertentangan dengan ketentuan dalam Peraturan Menteri PUPR Nomor 8 Tahun 2023 tentang Pedoman Penyusunan Perkiraan Biaya Pekerjaan Konstruksi Bidang PUPR

KETENTUAN PERALIHAN DAN PENUTUP

Pada saat Surat Edaran ini mulai berlaku, pengadaan pekerjaan konstruksi yang paketnya telah diumumkan dalam Sistem Informasi Rencana Umum Pengadaan (SIRUP) dengan menggunakan AHSP berdasarkan Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 1 Tahun 2022 tentang Pedoman Penyusunan Perkiraan Biaya Pekerjaan Konstruksi Bidang Pekerjaan Umum dan Perumahan Rakyat (Berita Negara Republik Indonesia Nomor 9 Tahun 2021, tetap dilaksanakan prosesnya sampai selesai.

Pengadaan pekerjaan konstruksi yang paketnya belum diumumkan dalam Sistem Informasi Rencana Umum Pengadaan (SIRUP) menggunakan Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor 8 Tahun 2023 tentang Pedoman Penyusunan Perkiraan Biaya Pekerjaan Konstruksi Bidang Pekerjaan Umum dan Perumahan Rakyat (Berita Negara Republik Indonesia Nomor 683 Tahun 2023).

Surat Edaran ini mulai berlaku pada tanggal ditetapkan

TABEL ACUAN DAN TATA CARA PENYUSUNAN BIAYA PENERAPAN SMKK

TABEL ACUAN FAKTOR KONVERSI BAHAN

▲ Tabel A.1 - Faktor Pemampatan (Buckling Factor) (Fk)

Jenis Tanah	Kondisi Tanah	Kondisi tanah yang akan dikerjakan		
Jenis Tanan	Semula	Asli	Lepas	Padat
	A	1,000	1,110	0,950
Pasir	В	0,900	1,000	0,860
	С	1,050	1,170	1,000
	A	1,000	1,250	0,900
Tanah Liat Berpasir	В	0,800	1,000	0,720
	С	1,100	1,390	1,000
	A	1,000	1,430	0,900
Tanah Liat	В	0,700	1,000	0,630
	С	1,110	1,590	1,000
	A	1,000	1,180	1,080
Tanah campur Kerikil	В	0,850	1,000	0,910
_	С	0,930	1,090	1,000
	A	1,000	1,130	1,030
Kerikil	В	0,880	1,000	0,910
	С	0,970	1,100	1,000
	A	1,000	1,420	1,290
Kerikil Kasar	В	0,700	1,000	0,910
	С	0,770	1,100	1,000
	A	1,000	1,650	1,220
Pecahan cadas atau batuan lunak	В	0,610	1,000	0,740
	С	0,820	1,350	1,000
	A	1,000	1,700	1,310
Pecahan granit atau batuan keras	В	0,590	1,000	0,770
	С	0,760	1,300	1,000
	A	1,000	1,750	1,400
Pecahan batu	В	0,570	1,000	0,800
	С	0,710	1,240	1,000
	A	1,000	1,800	1,300
Bahan hasil peledakan	В	0,560	1,000	0,720
	С	0,770	1,380	1,000

A adalah Asli

B adalah Lepas

C adalah Padat

Bibliografi: 2) Specification and Application Handbook, Komatsu, Edition 28-Des 2007. Pg. 15A-3

ontoh:

Alat penggali (Excavator) pada umumnya menghasilkan bahan Lepas, sehingga

Tanah liat, dari Lepas Ke Padat, atau dari 1 ke 0,63, maka Fk = 0,63

Tanah liat berpasir dari Lepas ke Asli, dari 1 ke 0,8, maka Fk = 0,80

BERAT ISI BAHAN BAKU, BAHAN OLAHAN DAN CAMPURAN

Tabel A.2.a - Berat Isi dan Penyerapan Agregat Kasar dan Halus

No.	Nama Bahan	Lokasi	Berat Isi Lepas (BiL) (T/m³)	Berat Isi Padat (BiP) (T/m³)	Penyerapan (%)
		Sumatera	1,078 - 1,619	1,280 - 1,787	0,510 - 2,890
		Jawa - Bali	1,057 - 1,568	1,370 - 1,614	0,670 - 2,985
		Nusa Tenggara	1,271 - 1,450	1,382 - 1,490	0,529 - 2,720
1	Agregat Kasar	Kalimantan	1,260 - 1,640	1,371 - 1,750	0,514 - 2,662
		Sulawesi	1,269 - 1,571	1,364 - 1,721	0,550 - 2,780
		Maluku	1,251 - 1,650	1,491 - 1,706	0,516 - 2,890
		Papua	1,300 - 1,550	1,400 - 1,600	0,507 - 2,225
		Sumatera	1,093 - 1,819	1,208 - 1,850	0,563 - 2,902
		Jawa - Bali	1,182 - 1,640	1,308 - 1,850	0,513 - 2,946
		Nusa Tenggara	1,400 - 1,662	1,560 - 1,764	0,725 - 2,934
2	Agregat Halus	Kalimantan	1,388 - 1,650	1,475 - 1,770	0,522 - 2,881
	Sula	Sulawesi	1,180 - 1,553	1,290 - 1,731	0,541 - 2,600
		Maluku	1,406 - 1,630	1,579 - 1,705	0,516 - 2,990
		Papua	1,250 - 1,640	1,350 - 1,900	1,200 - 2,750

Bila pada tabel, data tidak tersedia atau ditemukan nilai di luar angka-angka pada tabel maka data yang digunakan adalah data hasil pengujian Laboratorium.

Tabel A.2.b – Berat Isi Agregat, Pasir, Tanah, Konversi Bahan Padat dan Lepas

		Board Int Body (DID)	December 1 and 1 (DIII)	Konversi b	ahan (Fk)
lo.	Nama Bahan	Berat Isi Padat (BiP)	Berat Isi Lepas (BiL)	Fk1	Fk2
1		(T/m³)	(T/m³)	L ke P	P ke L
1	WBMA/ DBMA	1.740 - 1.920	1.582 - 1.699	0.897	1.115
2	Batu belah (gunung/kali), boulder	1.200 - 1.250	0.914 - 0.960	0.765	1.307
3	Batu Kali	1.200 - 1.250	0.960 - 0.971	0.788	1.268
4	Chip (lolos ¾ ' tertahan No.4)	1.220 - 1.680	1.109 - 1.150	0.797	1.255
5	Chip (lolos No. 4 tertahan No.8)	1.430 - 1.680	1.300 - 1.327	0.849	1.177
6	Agregat Halus, hasil pemecah batu	1.380 - 1.680	1.254 - 1.624	0.938	1.066
7	Agregat Kasar, hasil pemecah batu	1.255 - 1.650	1.200 - 1.283	0.867	1.154
8	Agregat KIs A	1.740 - 1.810	1.303 - 1.582	0.811	1.232
9	Agregat KIs B	1.760 - 1.800	1.324 - 1.600	0.821	1.219
10	Sirtu	1.620 - 2.050	1.373 - 1.473	0.783	1.277
11	Pasir Pasang, Pasir Kasar/beton	1.520 - 1.620	1.243 - 1.422	0.848	1.180
12	Pasir Urug/ Tanah pilihan	1.300 - 1.600	1.040 - 1.151	0.760	1.316
13	Tanah biasa/tanah urug	1.300 - 1.450	1.040 - 1.145	0.795	1.258
15	Agregat ringan	1.352	1.057	0.782	1.279
16	Pasangan batu kosong	1.550 - 1.700	1.250 - 1.400	0.815	1.227
17	Material humus	1.300 - 1.500	1.100 - 1.200	0.823	1.215
18	Slag pecah (broken)	1.762 - 2.110	1.182 - 1.762	0.753	1.328
19	Slag padat (solid)	2.110			

Faktor konversi dapat diambil berdasarkan berat isi maksimum atau berat isi minimum, atau berat isi rata-rata keduanya. Bila ditemukan nila di luar angka tersebut, atau bahan lain yang diperlukan, dapat digunakan berdasarkan bukti hasil uji Laboratorium

BERAT ISI BAHAN BAKU, BAHAN OLAHAN DAN CAMPURAN

Tabel A.2.c - Berat Isi Asbuton

No.	Nama Bahan Berat isi Padat (T/m³)			adat (T/m³)
1	1 Asbuton halus, asbuton butir, mikro asbuton Tipe 5/20; 50/30, 1,02			
1. Asbuton butir Tipe 5/20 : Kelas penetrasi 5 (0,1 mm) dan kelas kadar bitumen 20 %.				
2. Asbuton butir Tipe 50/30 : Kelas penetrasi 50 (0,1 mm) dan kelas kadar bitumen 30 %.				
Bila ditemukan nilai di luar angka tersebut, atau bahan lain yang diperlukan, dapat digunakan				
bero	dasarkan bukti hasil uji Laboratorium			

BERAT ISI BAHAN BAKU, BAHAN OLAHAN DAN CAMPURAN

No.	Nama Bahan	Lokasi	Berat Isi Padat (D) (T/m²)	Kadar Aspal (%)
		Sumatera	2,211 - 2,344	5,260 - 6,400
		Jawa - Bali	2,225 - 2,680	5,500 - 6,600
	AC-WC	Nusa Tenggara	2,288 - 2,374	5,600 - 6,800
1		Kalimantan	2,290 - 2,317	5,360 - 6,600
		Sulawesi	2,276 - 2,278	5,100 - 6,600
		Maluku	2,254 - 2,265	5,600 - 6,500
		Papua	2,170 - 2,360	5,400 - 6,200
		Sumatera	2,266 - 2,381	5,200 - 6,150
		Jawa - Bali	2,229 - 2,670	5,000 - 6,100
		Nusa Tenggara	2,296 - 2,387	5,000 - 6,000
2	AC-BC	Kalimantan	2,311 - 2,593	5,060 - 6,000
		Sulawesi	2,285	5,300 - 6,000
		Maluku	2,276 - 2,287	5,400 - 5,600
		Papua	2,175 - 2,370	5,100 - 6,000
		Sumatera	2,270 - 2,405	5,000 - 6,000
		Jawa - Bali	2,230	5,100 - 5,800
		Nusa Tenggara	2,311 - 2,392	4,800 - 5,000
3	AC-Base	Kalimantan	2,291 - 2,475	4,800 - 5,700
		Sulawesi	2,300 - 2,340	5,000 - 5,600
		Maluku	N/A	N/A
		Papua	2,200 - 2,400	5,000 - 5,800
		Sumatera	2,249 - 2,318	5,700 - 6,300
		Jawa - Bali	2,232 - 2,366	5,600 - 6,600
		Nusa Tenggara	2,334 - 2,362	6,000 - 6,200
4	AC-WC Mod	Kalimantan	2,317	5,800 - 6,300
		Sulawesi	2,310	5,400 - 5,800
		Maluku	2,132 - 2,340	5,750 - 7,000
		Papua	2,180 - 2,375	5,400 - 6,200
		Sumatera	2,264	5,500 - 5,600
		Jawa - Bali	2,269 - 2,336	4,850 - 6,500
		Nusa Tenggara	2,384 - 2,362	5,000 - 5,222
5	AC-BC Mod	Kalimantan	N/A	N/A
		Sulawesi	2,320 - 2,340	5,500 - 5,700
		Maluku	2,216 - 2,308	5,500 - 6,550
		Papua	2,190 - 2,390	5,100 - 6,000
		Sumatera	2,344	5,000 - 5,200
		Jawa - Bali	2,349	4,900 - 5,000
		Nusa Tenggara	N/A	N/A
6	AC-Base Mod	Kalimantan	N/A	N/A
		Sulawesi	2,310 - 2,360	5,200 - 5,600
		Maluku	N/A	N/A
		Papua	2.200 - 2.420	5.000 - 5.800

Tabel A.2.d- Berat Isi Campuran Beraspal

No.	Nama Bahan	Lokasi	Berat Isi Padat (D) (T/m²)	Kadar Aspal (%)
		Sumatera	2,220 - 2,230	6,500 - 7,200
		Jawa - Bali	2,231 - 2,236	6,800 - 6,820
		Nusa Tenggara	2,220 - 2,318	7,000 - 7,300
7	HRS-WC	Kalimantan	N/A	6,022 - 6,900
		Sulawesi	2,200 - 2,296	6,800 - 7,100
		Maluku	2,270	6,900
		Papua	2,150 - 2,340	6,400 - 6,900
8	HRS-Base		2,170 - 2,290	5,360 - 6,590
co.	Split Mastic/Matrix Asphalt (SMA) Tipis		2,240 - 2,310	5,500 - 6,400
10	Latasir A		2,160 - 2,250	6,600 - 7,300
11	Latasir B		2,160 - 2,220	6,100 - 6,840
12	Cold Mix Recycled Foam Bitumen (CMRFB)		2,081 - 2,153	4,950 - 5,300
13	Cold Paving Hot Mix Asbuton (CPHMA)		2,200 - 2,220	5,600 - 8,000

N/A : Data tidak tersedia atau belum pernah diterapkan di wilayah tersebut. Bila pada tabel, data tidak tersedia atau ditemukan nilai di luar angka-angka pada tabel maka data yang digunakan adalah data hasil pengujian Laboratorium.

BERAT ISI BAHAN BAKU, BAHAN OLAHAN DAN CAMPURAN

Tabel A.2.e – Berat Isi Semen, Abu, Aspal, Kapur Curah dan Lateks

No.	Nama Bahan	Berat i	Berat isi padat (T/m°)	
		(Т		
		Min	Maks	7
1	Semen	1,250	1,506	3,140 - 3,150
2	Kapur	1,073	1,075	2,600 - 2,650
3	Abu terbang (Fly ash)	1,370	1,750	2,200 - 2,800
4	Aspal	0,960	1,050	0,860 - 1,020
5	Superplasticizer untuk beton semen	1,050	1,065	1,180 - 1,200
6	Zeolit	1,200	1,400	2,200 - 2,800
7	Polimer/ Lateks	1,020	1,100	1,100
8	Emulsifier	0,950	0,985	0,985
9	HCI	1,160	1,190	1,190
10	CaCl	1,980	2,150	2,150
11	Aspal emulsi, MC	0,975	0,985	0,985
12	Aditif aspal	0,990	1,008	1,008
13	Sealant aspal	1,005	1,008	1,006

Bila ditemukan nilai di luar angka tersebut, atau bahan lain yang diperlukan, dapat digunakan berdasarkan bukti hasil u Laboratorium

SIGAP MEMBANGUN NEGERI

=TABEL ACUAN

BERAT ISI BAHAN BAKU, BAHAN OLAHAN DAN CAMPURAN

Tabel A.2.f - Berat Jenis Cat, Oli, Wax dan Minyak

No.	Nama Bahan	Bera	t Jenis
NO.	Nama Banan	Min	Maks
1	Cat thermoplastic (variasi)	1,990	2,150
2	Cat coldplastic (utk zona aman)		1,200
3	Cat Roadline waterbased (area parkir dll)		1,200
4	Cat non thermoplastic (solvent based)	1,500	1,600
- 5	Cat besi, anti karat	1,300	1,600
6	Cat tembok	1,300	1,400
7	Minyak tanah	0,8	0,805
8	Minyak: Bensin, Premium	0,729	0,732
9	Minyak: Bunker Oil (BO), MFO, FO, MC	0,86	0,902
10	Minyak: Oli mesin SAE 40-50	0,862	0,874
11	Minyak: Solar	0,835	0, 840
12	Minyak: Thinner	0,628	0,680
13	Wax		0,87

Bila ditemukan nilai di luar angka tersebut, atau bahan lain yang diperlukan, dapat digunakan berdasarkan bukti hasil uji Laboratorium

Caf thermoplastic digunakan sebagai garis menerus, modul, zebra cross, tanda panah, zewon, yang mana permukaan hasil aplikasinya berbentuk datar. Karakter/spesifikasi dari thermoplastic: Berat jenis (kg/L):1,99. Titik lunak ('c):106. Indeks cahaya (%)

Cat roadfine iraferbase digunkan untuk membuat design areal parkir, garis pembatas parkir, tanda panah, blok pulau (island) dan penomoran. Selain itu jenis cat ini juga bisa digunakan untuk membuat desain lapisan permukaan pada lapangan olahraga serta untuk membuat lapisan permukaan lantai pabrik dan gudang pada sector industry. Karakteristik Berat jenis: 1,20

Cat solven base digunakan untuk membuat tanda pada permukaan bandara(taxi way, run way, apron dan service road) serta bisa diaplikaikan untuk membuat tanda pada permukaan jalan dan pengaturan area parkir. Cat jenis ini lebih bagus untuk pengecatan kansteen karena cat ini selain cerah glooss juga memberi efek reflektif pada malam hari. Karakter cat: Berat jenis : 1,5-1,6. Kekentalan : 78-80. Daya tutup (kg/m2) : 1,75-2m2. Waktu pengeringan : 15-30 menit

Cat coldplastic digunakan u ntuk zona selamat sekolah, jalur bus khusus, jalur sepeda dan zona rawan kecelakaan lalu lintas lainnya

BERAT ISI BAHAN BAKU, BAHAN OLAHAN DAN CAMPURAN

Tabel A.2.g - Berat Isi Campuran Berbasis Semen

No.	Nama Bahan	Berat Isi Campuran (T/m³)	Keterangan
1	Beton semen tp tulangan	2.230 - 2.311	3
2	Beton semen dg tulangan	2.430 - 2.511	
3	Beton Karet	2.240 - 2.380	s/d 9% berat
4	Beton serat (fiber)	2.240 + 2.389	s/d 0,4% berat
5	Beton ringan	1.440 - 1.840	www.NRMCA.org
6	Lean concrete	2.200 - 2.360	
7	Mortar busa	0.600 - 0.800	
8	Grouting semen	2.250 - 2.300	
9	Mortar semen-pasir	2.200 - 2.350	
10	Soil Semen	1.600 - 2.060	K.Semen:3 ↔ 8
11	CTB, RCC	2.140 - 2.310	
12	Cement Treated Recycled Base (CTRB)	2.065 - 2.112	¥

Bila ditemukan nilai di luar angka tersebut, atau bahan lain yang diperlukan, dapat digunakan berdasarkan bukti hasil uji Laboratorium

BERAT ISI BAHAN BAKU, BAHAN OLAHAN DAN CAMPURAN

Tabel A.2.h - Berat Isi Bahan Plastik, Kayu, Pipa (PVC, HDPE, GIP, DCIP), Baja

Ma	Manna Bahan	Minimum	Maksimum	Bornt Innie
No.	Nama Bahan	(T/m°)	(T/m°)	Berat Jenis
1	Backer rod	0,340	0,350	
2	Plastik Polietilin			0,965
3	Polurethane foam			0,360
4	Epoxy resin			1,610
5	Bonding breaker			0,965
6	Curing Compound			1,000
7	PVC (Polyvinyl chloride)	0,500	1,200	
8	HDPE (High Density Poly-Ethylene)	0,500	1,000	
9	GIP (Galvanized Irin Pipe)	7,550	8,450	
10	DCIP (Ductile Cast Iron Pipe)	7,500	8,650	
11	Kayu	0,650	0,950	
12	Baja tulangan, Baja profil			7,856
13	Asphaltic plug	1,400	1,600	
14	Silicon seal			1,34
15	Karet alam, sintetis, neoprene	1025	1170	
16	Lem PVC	0,95	0,98	

Bila ditemukan nilai di luar angka tersebut, atau bahan lain yang diperlukan, dapat digunakan berdasarkan bukti hasil uji Laboratorium

TABEL ACUAN FAKTOR KEHILANGAN BAHAN

Tabel A.3.a - Faktor Kehilangan Bahan Berbentuk Curah dan Kemasan pada Pekerjaan Jalan Beraspal

Bentuk Bahan	Perkiraan Jumlah bahan yang digunakan		
Defical Darian	< 100 m³	≥ 100 m³	
Curah	1,053 - 1,080	1,032 - 1,068	
Kemasan	1,022 - 1,040	1,009 - 1,033	
Catatan :			

Sebagai ilustrasi, bila persediaan bahan yang ditimbun sebanyak 100 m² mala bahan yang harus disiapkan adalah sebanyak 1,068 x 100 m² = 1068 m².

Bila jumlah bahan kurang dari 100 kemasan ambil Fh maksimum 1,04 dan bila lebih besar dari pada 100 kemasan diambil Fh maksimum 1,033. Jadi bila bahan yang ditimbun sebanyak 200 kemasan akan mengalami kehilangan atau rusak mencapai sekitar 7 kemasan (sekitar 3,3%).

Tabel A.3.b - Faktor Kehilangan Bahan Berbentuk Curah dan Kemasan pada Pekerjaan Berbasis Semen atau Beton Semen

Bentuk bahan	Faktor kehilangan %
Semen	1,010 - 1,020
Pasir/ Agregat halus	1,050 - 1,100
Agregat kasar	1,050 - 1,100
Superplasticizer	1,010 - 1,020

Apabila digunakan angka/nilai diluar yang tercantum dalam tabel

harus merupakan hasil pengujian laboratorium

TABEL ACUAN FAKTOR KEHILANGAN BAHAN

Tabel A.3.c - Faktor kehilangan Cat

Daniel kakas	Alexander disconnections	Faktor kehilangan (LF)			
Bentuk bahan	Alat yang digunakan	Min	Maks		
Out backwais sis	Manual	0,010	0,450		
Cat berbasis air	Mekanis	0.080	0,350		
Out backwais misself	Manual	0,010	0,350		
Cat berbasis minyak	Mekanis	0,080	0,250		

SIGAP MEMBANGUN NEGERI

TABEL ACUAN KOMPOSISI CAMPURAN BETON

Tabel A.4 - Komposisi Bahan Campuran Beton Semen Terhadap Berat
(Asumsi s = 3,5%; SU2018 Tb.7.1.3.2)

CONT	OH KOMPOSISI BETON : SLUMP 5 cm;	PARTIKEL	MAKS.3/4	* & BJ KJP (S	SD) (KSR & P	SR) = 2,56 & F	M PSR = 2,75		
No.	Mutu	fc'	f.a.s	Semen	Fly Ash	Agregat	Agregat	Batu	
Petr.	Mulu	(MPa)	(W/C)	(kg)	(kg)	Halus (kg)	Kasar (kg)	Belah (kg)	
1	Beton mutu tinggi	50	0.339	460	115	647	894		
2	Beton mutu tinggi	45	0.351	445	111	654	903		
3	Beton mutu sedang	40	0.375	417	104	681	903		
4	Beton mutu sedang	35	0.412	379	95	698	925		
5	Beton mutu sedang	30	0.455	428		731	930		
6	Beton mutu sedang	25	0.509	383		764	934		
7	Beton mutu sedang	20	0.59	330		818	922		
8	Beton mutu rendah	15	0.666	293		850	921	-	
9	Beton siklop	15	0.666	195		567	614	688	
10	Beton mutu rendah	10	0.7	279		873	909		
CONT	OH KOMPOSISI SELF COMPACTED CO	ONCRETE (S	CC) : SLU	MP FLOW 60	om; DATA LA	INNYA SAMA	DNG DIATAS		
1	SCC mutu sedang	30	0.455	428	157	760	744		
2	SCC mutu sedang	25	0.509	383	156	795	747		
3	SCC mutu sedang	20	0.59	330	151	851	738		
Catata	Catatan : contoh komposisi di atas adalah perkiraan rancangan campuran awal dan dapat disesuaikan dengan sifat-sifat bahan yang								

Catatan:

 Fly ash maksimal 25% dari berat semen, untuk yang bukan SCC dan fly ash pada SCC tidak boleh disubstitusi dengan semen, karena merupakan komponen powder untuk memberikan shump flow yang dikehendaki.

digunakan dan tidak dapat dijadikan dasar untuk menolak hasil pekerjaan. Penggunaan fly ash adalah alternatif untuk

2) Agregat kasar adalah batu pecah maksimum 19 mm.

mereduksi penggunaan kadar semen tinggi yang umumnya rawan terhadap retak rambut

Tabel A.4.a disajikan contoh Komposisi Beton, Slump 5 cm, Ukuran Agregat maksimum ¾", Berat Jenis kering permukaan jenuh (saturated surface dry, SSD) 2,66; Modulus kehalusan (Fineness Modulus) 2,75. <u>Jika tidak menggunakan fly ash maka berat fly ash akan dianggap</u> semen pada berat yang sama.

TABEL ACUAN KOMPOSISI CAMPURAN BETON

Tabel A.4.a – Praktek Standar untuk Pemilihan Proporsi Beton Normal, Beton Berat, dan Beton Massa (Pendekatan ACI 211.1)

Bump = 100 <u>+</u> 25 mm (Beton Mutu Rendah dan Sedang)

Blump = 60 + 25 mm (Beton Mutu Tinggi)

%gg = 18 mm

BJ(88D)(K8R&P8R) = 2.68 FlyAsh = 20%

FM P8R = 2.76

No.	Mutu	fic (MPa)	fa.s (WC)	PC (kg/m3)	Camentitios PC (kg/m3)	Is Materials Fly Ash (kg/m3)	Aggregat Halus (kg/m3)	Aggregat Kasar (kg/m3)	Alr (kg/m3)
1	Beton mutu tinggi	50	0.316	592	473	118	562	1009	187
2	Beton mutu tinggi	45	0.333	561	449	112	592	1009	187
3	Beton mutu sedang	40	0.357	565	452	113	573	1009	202
4	Beton mutu sedana	35	0.396	509	408	102	629	1009	202
5	Beton mutu sedana	31	0.431	468	468		671	1009	202
6	Beton mutu sedana	30	0.441	457	457		681	1009	202
7	Beton mutu sedang	28	0.461	437	437		701	1009	202
8	Beton mutu sedana	25	0.495	407	407		731	1009	202
9	Beton mutu sedana	21	0.548	368	368		770	1009	202
10	Beton mutu sedana	20	0.579	348	348		790	1009	202
11	Beton mutu rendah	17	0.627	322	322		817	1009	202
12	Beton mutu rendah	15	0.659	306	306		832	1009	202
13	Beton mutu rendah	10	0.755	267	267		871	1009	202
14	Beton mutu rendah	7.5	0.806	250	250		888	1009	202

BERAT BESI/BAJA TULANGAN, BAJA PRATEGANG/KAWAT STRAND

Tabel A.5.a - Berat Baja Tulangan Beton Batang Polos (BjTP) Per Meter

	В	aja Tulang	an Polos (BjTP24)		SNI 2052:2017
No.	Penamaan	Diameter, mm	Panjang	Berat/Batang	Berat/m'	Penampang A
rio. Penamas			(m)	(Kg/ Batang)	(Kg/ m')	mm2
1	P 4	- 4	11	1,09	0,10	13
2	P 6	6	12	2,66	0,22	28
3	P 8	8	12	4.74	0.39	50
.5	P 10	10	12	7,40	0.62	79
7	P 12	12	12	10,65	0.89	113
8	P 14	14	12	14,50	1,21	154
10	P 16	16	12	18,94	1,58	201
11	P 19	19	12	26,71	2,23	284
12	P 22	22	12	35,81	2,98	380
15	P 25	25	12	46,24	3,85	491
16	P 28	28	12	58,00	4,83	616
19	P 32	32	12	75,76	6,31	804
21	P 36	36	12	95,88	7,99	1018
23	P 40	40	12	118,38	9.86	1257
24	P 50	50	12	184,96	15,41	1964

Penampang nominal,mm2: A = 0,7854 x d²

SIGAP MEMBANGUN NEGER

=TABEL ACUAN

BERAT BESI/BAJA TULANGAN, BAJA PRATEGANG/KAWAT STRAND

Tabel A.5.b - Berat Baja Tulangan Beton Batang Sirip (BjTS) per Meter (SNI 2052:2017)

	Baja Tulangan Sirip (BjTS 32 dan BjRS 40)									2:2017
No.	lo. Penamaan	Diameter	Panjang,	Berat/Batang	Berat	Penampang, A	Tinggi	Sirip, H	Jarak Sirip Melintang (P)	Lebar Sirip Membujur (T)
			(m)	(Kg/ Batang)	(Kg/ m')	mm2	Min. (mm)	Maks. (mm)	Maks. (mm)	Maks. (mm)
1	8.6	- 6	12	2,66	0.22	28	0,3	0.6	4.2	4.7
2	8.8	8	12	4.74	0,39	50	0.4	0.8	5,6	6,3
3	5.9	9	12	5,99	0,50	64	0,45	0,9	6,3	7,1
4	S 10	10	12	7,40	0.62	79	0,5	1	7	7,9
5	8 13	13	12	12,50	1,04	133	0,65	1.3	9.1	10,2
6	\$ 16	16	12	18,94	1,58	201	0,8	1,6	11,2	12,6
7	S 19	19	12	26,71	2.23	284	0,95	1.9	13,3	14,9
8	8 22	22	12	35,81	2.98	380	1,1	2.2	15,4	17,3
.9	8 25	25	12	46,24	3,85	491	1,25	2.5	17,5	19,6
10	\$ 32	32	12	75,76	6,31	804	1,6	3,2	22,4	25,1
11	8 36	36	12	95,88	7,99	1018	1,8	3.6	25,2	28.3
12	S 40	40	12	118,38	9,86	1257	2	4	28	31,4
13	\$ 50	50	12	184,96	15,41	1964	2.5	5	35	39,3
14	S 54	54	12	215,74	17,98	2290	2,7	5.4	37,8	42,4
15	8 57	57	12	240,38	20.03	2552	2.85	5.7	39.9	44.8

Penampang nominal,mm2: A = 0,7854 x d²
Berat nominal per m': 0,00785 x 0,7854 x d²
Jarak sirip melintang maksimum, mm: 0,7 d

Tinggi sirip minimum, mm: 0,05 d Tinggi sirip maksimum, mm: 0,10 d

Lebar Sirip atau Jumlah dua sirip membujur maksimum; buah: 0,25 K

K adalah keliling nominal, mm = 0.3142 x d

BERAT BESI/BAJA TULANGAN, BAJA PRATEGANG/KAWAT STRAND

Tabel A.5.c – Mutu Kawat Baja Prategang/Strand, Dimensi dan Berat (Kg/m) (SNI 1154:2016)

	SNI 1154:2016				
Simbol	Diameter Nominal Pilinan, (mm)	Toleransi Diameter, (mm)	Luas Penampang Nominal, (mm2)	Berat Nominal, (g /m')	Selisih Diameter Kawat Inti dan Kawat Luar, Min, (mm)
	6,4		23	182	0,025
	7,9		37	294	0,038
BHjP-P7 N.A	9,5	± 0,40	52	405	0,051
KBjP-P7 R.A	11,1	10,40	69,7	548	0,064
	12,7		92,8	730	0,078
	15,2		139	1090	0,102
	9,53		55	430	0,051
	11,1		74,2	580	0,064
	12,7		98,7	780	0,076
KBjP-P7 N.A	13,2	+,65	108	840	0,876
KBjP-P7 R.A	14,3	-0,15	124	970	0,089
	15,2		140	1100	0,102
	15,7		150	1200	0,102
	17,8		190	1500	0,114

BERAT BESI/BAJA TULANGAN, BAJA PRATEGANG/KAWAT STRAND

Tabel A.5.d – Berat dan Dimensi Baja Tulangan Wire Mesh

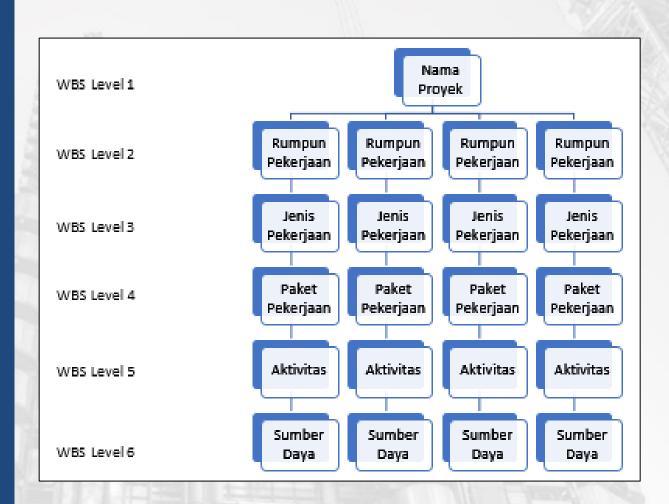
	Nameter	III	Const	Berat per	Beret	Aktual (kg/	(embar)	Bornton	Berat	normalip	er m³ beto	n, Kg
Type	Diameter (mm)	Ukuran per lembar (m)	Speei	lembar,	1	oleransi, m	nm	Berat per m ²		Tebal b	eton, m	
	(mm)	semear (m)	(cm)	normal	0,2	0,3	0,5		0,2	0,25	0,3	0,35
M4	4	2,1x5,4	15 x 15	15,45	13,94	13,22	11,83	1,362	6,812	5,450	6,812	5,450
M5	5	2,1 x 5,4	15 x 15	24,14	22,24	21,33	19,55	2,129	10,644	8,515	10,644	8,515
M6	6	2,1x5,4	15 x 15	34,76	32,48	31,37	29,2	3,065	15,326	12,261	15,326	12,261
M7	7	2,1 x 5,4	15 x 15	47,31	44,64	43,34	40,79	4,172	20,860	16,688	20,860	16,688
M8	- 8	2,1x5,4	15 x 15	61,79	58,74	57,24	54,31	5,449	27,244	21,795	27,244	21,795
M9	9	2,1x5,4	15 x 15	78,2	74,76	73,07	69,75	6,896	34,480	27,584	34,480	27,584
M10	10	2,1x5,4	15 x 15	98,54	92,72	90,84	87,13	8,513	42,566	34,053	42,566	34,053
M11	11	2,1x5,4	15 x 15	116,82	112,61	110,53	106,44	10,302	51,508	41,206	51,508	41,208
M12	12	2,1x5,4	15 x 15	139,02	134,43	132,16	127,68	12,259	61,296	49,037	61,296	49,037

Tabel A.5.e – Perkiraan Baja Tulangan Untuk Konstruksi Beton

Jenis Konstruksi	Kg/m3	Volume (%)
Kolom	150 - 200	2 - 3
Balok	100 - 150	1,5 - 2
Pelat	80 - 100	0,5 - 1,5
Tiang Pancang	80- 100	2 - 3
Rakit (Raft)	90 - 120	

Catatan: Angka tersebut adalah hanya perkiraan dan dapat berubah sesuai dengan rancangan (disain) atau sesuai dengan kebutuhan untuk kestabilan konstruksi. (Ref: Dari berbagai sumber)

Apabila digunakan angka/nilai diluar yang tercantum dalam tabel harus merupakan hasil pengujian laboratorium.



Tahap dalam Menyusun biaya penerapan SMKK:

- a. Mencantumkan lingkup pekerjaan dalam tabel Identifikasi Bahaya, Pengendalian Risiko, dan Peluang (IBPRP) sesuai dengan Lembar Data Pemilihan (LDP) di dalam Dokumen Pemilihan
- b. Melakukan identifikasi bahaya dan risiko pada setiap aktivitas sesuai lingkup pekerjaan
- c. Menyusun Pengendalian Risiko
- d. Menentukan kebutuhan sumber daya keselamatan konstruksi berdasarkan 9 komponen biaya SMKK

- a. Mencantumkan lingkup pekerjaan dalam tabel Identifikasi Bahaya, Pengendalian Risiko, dan Peluang (IBPRP) sesuai dengan Lembar Data Pemilihan (LDP) di dalam Dokumen Pemilihan
 - Lingkup pekerjaan dalam dokumen pemilihan dicantumkan dalam tabel IBPRP dengan cara dipecah menjadi aktivitas yang lebih sederhana (menggunakan Work Breakdown Structure/WBS).
 - WBS digunakan untuk membagi proyek kompleks menjadi tugas yang lebih sederhana serta mudah dikelola.

PEMBAGIAN LEVEL WBS

WBS Level 1: Nama Proyek

WBS Level 2: Rumpun

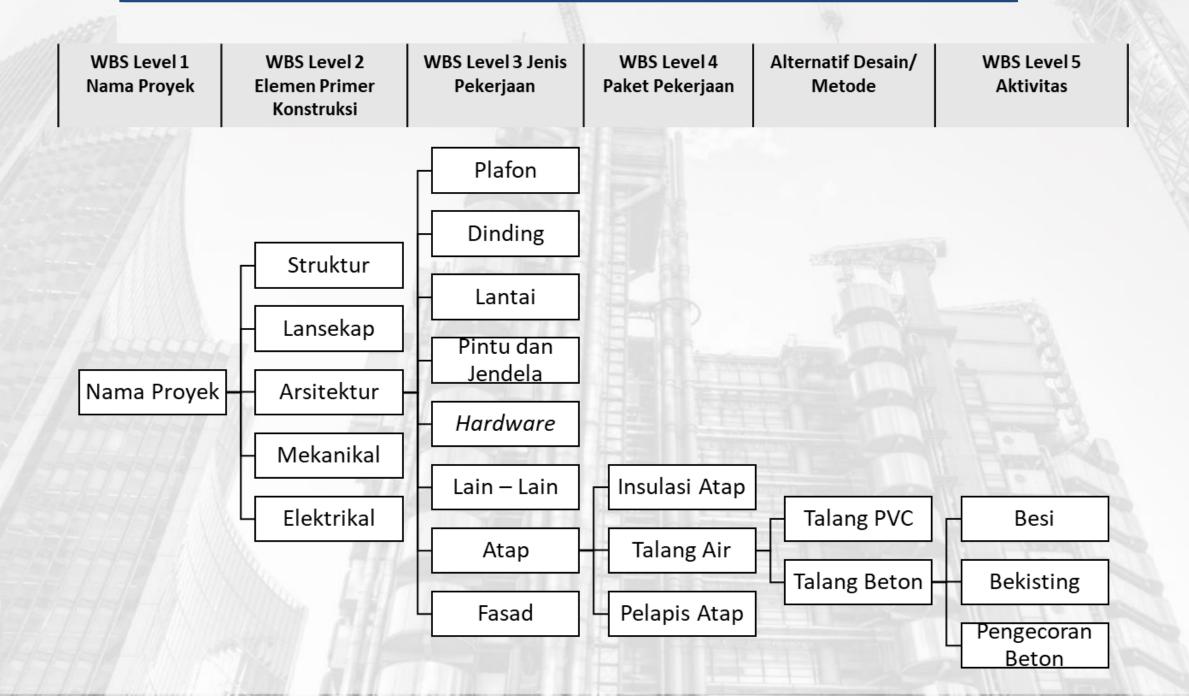
Pekerjaan

WBS Level 3: Jenis

Pekerjaan

WBS Level 4: Paket

Pekerjaan


Alternatif Metode Kerja

WBS Level 5: Aktivitas

Pekerjaan

WBS Level 6: Sumber Daya

Contoh WBS Bangunan Gedung (Arsitektural)

- b. Melakukan identifikasi bahaya dan risiko pada setiap aktivitas sesuai lingkup pekerjaan
 - Uraian pekerjaan dalam tabel IBPRP diintegrasikan dengan jadwal dan tahapan pekerjaan sebagaimana dalam dokumen Rencana Mutu Pekerjaan Konstruksi (RMPK).
 - IBPRP disusun oleh penanggung jawab Keselamatan Konstruksi bersama dengan tenaga ahli teknis (engineer) dan disetujui oleh pimpinan tertinggi pelaksana pekerjaan konstruksi di proyek.
 - Setiap aktivitas/uraian pekerjaan pada IBPRP dilakukan:
 - (1) identifikasi kondisi bahaya terhadap tenaga kerja, material, peralatan, dan lingkungan/publik.
 - (2) identifikasi risiko yang dapat terjadi akibat kondisi bahaya, terhadap tenaga kerja, material, peralatan, dan lingkungan/publik.

- c. Menyusun Pengendalian Risiko
 - Pengendalian disusun berdasarkan hirarki pengendalian sebagai berikut:
 - a.Eliminasi yaitu meniadakan bahaya dan risiko dengan tidak mempekerjakan manusia pada aktivitas;
 - b.Substitusi yaitu penggantian proses, operasi, bahan, atau peralatan dengan yang tidak berbahaya atau memiliki bahaya lebih kecil;
 - c. Rekayasa teknis yaitu pengendalian terhadap desain peralatan, tempat kerja untuk memberikan perlindungan Keselamatan Konstruksi;
 - d.Pengendalian administratif yaitu dengan mengendalikan prosedur, izin kerja, analisis keselamatan pekerjaan, dan peningkatan kompetensi tenaga kerja; dan
 - e.Penggunaan alat pelindung diri (APD) dan alat pelindung kerja (APK).

- d. Menentukan kebutuhan sumber daya keselamatan konstruksi berdasarkan 9 komponen biaya SMKK
 - Setelah diketahui pengendalian yang diperlukan maka langkah selanjutnya adalah menentukan volume masing masing sumberdaya yang ada pada program khusus dengan melihat gambar kerja, metode kerja yang diterapkan, jumlah personal, pekerja yang bekerja, dan jadwal pelaksanaan pekerjaan konstruksi,
 - Volume yang sudah dihitung dikelompokkan dalam biaya penerapan SMKK dengan minimal 9 (sembilan) komponen item yang terdapat dalam Permen PUPR Nomor 8 Tahun 2023 tentang Pedoman Penyusunan Perkiraan Biaya Pekerjaan Konstruksi Bidang PUPR dan kebutuhan lainnya sesuai dengan rencana pengendalian yang akan diterapkan.

TIVITAS PEKERJAAN KONSTRUKSI

TATA CARA PENYUSUNAN BIAYA PENERAPAN SMKK

IDENTIFIKASI BAHAYA

IDENTIFIKASI RISIKO

PENETAPAN PENGENDALIAN

PENETAPAN SUMBER DAYA:

Setiap aktivitas pekerjaan konstruksi diidentifikasi semua bahaya di dalamnya yang diakibatkan oleh:

- 1. Manusia
- 2. Material
- 3. Peralatan
- 4. Lingkungan/ publik

Setiap aktivitas pekerjaan konstruksi diidentifikasi risiko yang dapat terjadi (akibat kondisi bahaya) terhadap:

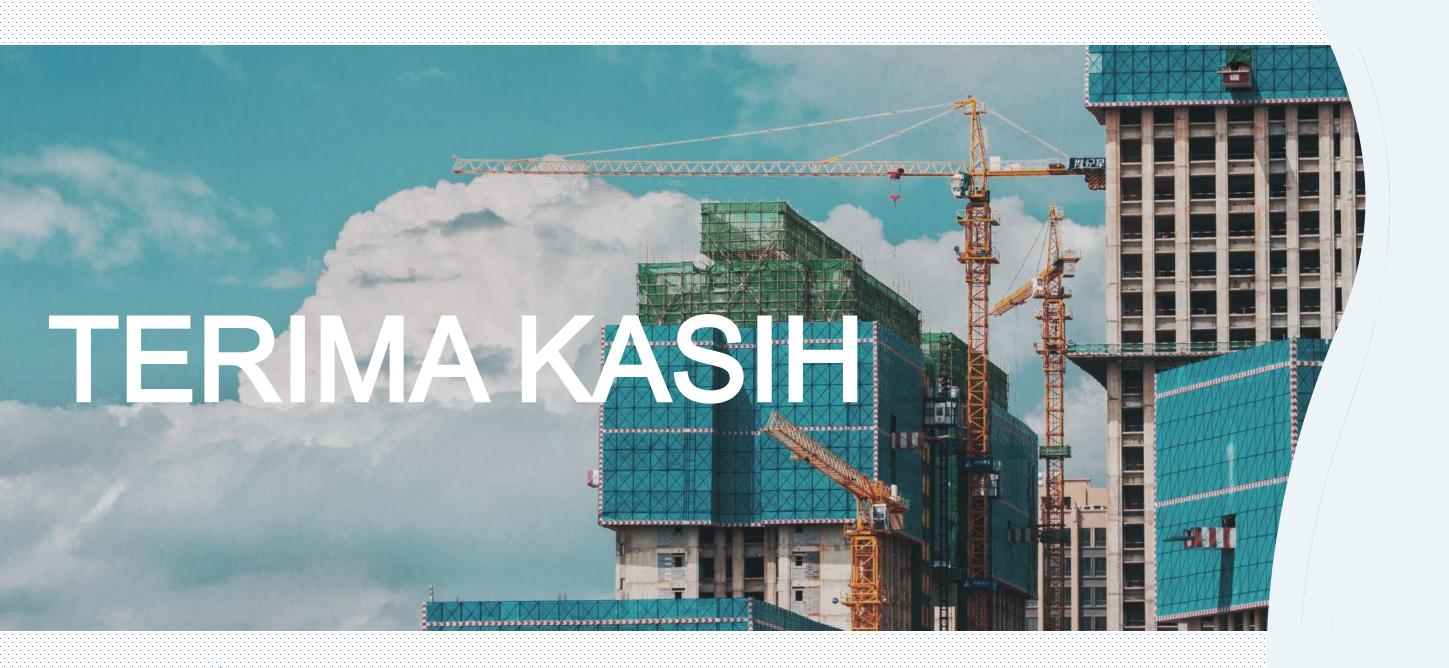
- 1. Manusia
- 2. Material
- 3. Peralatan
- 4. Lingkungan/publik

Pengendalian bahaya pada proyek konstruksi ditetapkan berdasarkan hierarki sbb:

- 1. Eliminasi
- 2. Substitusi
- 3. Pengendalian Teknik
- 4. Pengendalian administrasi
- 5. Alat pelindung diri

Pengendalian bahaya dilakukan dengan menyediakan sumber daya yang dibutuhkan dalam lingkup 9 komponen biaya SMKK, sbb:

- 1. Penyiapan dokumen penerapan SMKK
- 2. Sosialisasi, promosi, dan pelatihan
- 3. Alat pelindung kerja dan alat pelindung diri
- 4. Asuransi
- 5. Personel keselamatan konstruksi
- 5. Fasilitas sarana, prasarana, dan alat Kesehatan
- Rambu dan perlengkapan lalu lintas yang diperlukan
- 8. Konsultasi dengan ahli terkait keselamatan konstruksi
- Kegiatan dan peralatan terkait dengan pengendalian risiko keselamatan konstruksi, termasuk biaya pengujian/pemeriksaan lingkungan


Gambar A.1 Alur Penyusunan Biaya SMKK

LINK SE DIRJEN BINA KONSTRUKSI NOMOR 73 TAHUN 2023

bit.ly/SEDJBKAHSP

KEMENTERIAN PEKERJAAN UMUM DAN PERUMAHAN RAKYAT
DIREKTORAT JENDERAL BINA KONSTRUKSI